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Società Italiana di Fisica
Springer-Verlag 2001

Intermittency of 1D velocity spatial profiles in turbulence:
a magnitude cumulant analysis

J. Delour, J.F. Muzy, and A. Arnéodoa
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Abstract. We perform one- and two-points magnitude cumulant analysis of one-dimensional longitudinal
velocity profiles stemming from three different experimental set-ups and covering a broad range of Taylor
scaled Reynolds numbers from Rλ = 89 to 2500. While the first-order cumulant behavior is found to
strongly depend on Reynolds number and experimental conditions, the second-order cumulant and the
magnitude connected correlation functions are shown to display respectively universal scale and space-
lag behavior. Despite the fact that the Extended Self-Similarity (ESS) hypothesis is not consistent with
these findings, when extrapolating our results to the limit of infinite Reynolds number, one confirms the
validity of the log-normal multifractal description of the intermittency phenomenon with a well defined
intermittency parameter C2 = 0.025 ± 0.003. But the convergence to zero of the magnitude connected
correlation functions casts doubt on the asymptotic existence of an underlying multiplicative cascading
spatial structure.

PACS. 47.27.Eq Turbulence simulation and modeling – 02.50.-r Probability theory, stochastic processes,
and statistics – 47.27.Jv High-Reynolds-number turbulence – 47.53.+n Fractals

1 Introduction

Since Richardson’s original work [1], a common “mental
image” of fully developed turbulence is a dynamical cas-
cading process in which large eddies split up into smaller
ones which themselves blow up into even smaller ones and
so forth. According to this picture, energy propagates from
the integral scale, where eddies are generated, down to
the dissipative scale, where they vanish by viscous dis-
sipation, through a multiplicative process, each eddy in-
heriting a fraction of its parent’s energy. Since this early
intuitive description, the notion of cascade has remained
the creed of many models proposed in the literature [2]
to mimic the statistical properties of turbulent signals. In
1941, Kolmogorov [3] resumed Richardson’s picture in his
statistical analysis of the spatial fluctuations of velocity
profile in the sense that he linked the one-point statis-
tics of the velocity increments δvl = v(x + l) − v(x) over
different distances l, by some dimensional analysis which
predicted the remarkable scaling behavior of the moments
of δvl:

M(q, l) = 〈δvql 〉 ∼ lζq , (1)

where ζq = q/3. Actually, ζq turned out to be a non-linear
function of q in most experiments [2,4–6] and many stud-
ies inspired from Kolmogorov and Obukhov second the-
ory [7] tried to explain and to predict the analytical shape
of this non-linearity. The understanding of the intermit-
tency phenomenon in fully developed turbulence remains
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a challenging task not only from a theoretical point of view
but also at an empirical level [2]. The controversial situ-
ation at the origin of some disagreement between models
(e.g. the log-normal [7–9] as opposed to log-Poisson mod-
els [10]) results from the experimental observation that
the moments M(q, l) do not really scale perfectly. Indeed,
there is a persistent curvature when one plots ln(M(q, l))
vs. ln(l), which means that, rigorously speaking, there is
no scale invariance. In order to give a sense to the ex-
ponents ζq, Benzi et al. [11] defined the “Extended Self-
Similarity” (ESS) hypothesis by proposing the following
behavior for the moments of the velocity increments :

M(q, l) ∼ f(l)ζq , (2)

where f(l) would be some q-independent function of l.
Along this line, ln(M(q1, l)) vs. ln(M(q2, l)) curves look
definitely more linear than using standard log-scale rep-
resentations and, by assuming that ζ3 = 1 [2], some ex-
perimental consensus has apparently been reached on the
nonlinearity of the ζq spectrum [6]. In a recent theoret-
ical work [12], Arad et al. suggest that at low Reynolds
number, structure functions scaling properties are “pol-
luted” by anisotropic effects that can be mastered using
the irreducible representations of the rotation group. Un-
fortunately, this analysis is not tractable with single point
data. Hopefully, as shown below, some statistical quanti-
ties turn out to display universal behavior that are likely
to be insensitive to anisotropic effects.

In the early nineties, Castaing et al. [8] recasted the
cascade picture and the ESS hypothesis in a probabilistic
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description that accounts for the continuous deformation
of the probability density functions (pdf) of δvl with l, by
mean of a propagator Gll′ (l′ > l):

Pl(δv) =
∫ ∞
−∞

Gll′(u)e−uPl′(e−uδv)du. (3)

This equation can be related to a cascade process in
which the variable δvl is continuously decomposed as
δvl =

∏n
i=1Wli+1,liδvl′ , where ln(|Wli+1,li |) are indepen-

dent random variables of law Gli+1li . Within this frame-
work, the ζq and the f(l) ESS functions can be related to
the shape of Gll′ thanks to the cumulant generating func-
tion of the magnitude ln |δvl| [9,13], i.e. the logarithm of
the Fourier transform Ĝll′ of Gll′ :

ln Ĝll′(−iq) = ln (M(q, l)/M(q, l′)) ,
= ζq (f(l)− f(l′)) ,

(4)

the classical scale invariant case corresponding to f(l) =
ln(l). In this paradigm, the successive terms of the poly-
nomial development of ln (M(q, l)/M(q, l′)) as a function
of q, involve the cumulants Cn(l) = −Cnf(l) of ln |δvl|
(Eq. (7)) from which one can express the ζq spectrum as:

ζq = −
+∞∑
n=1

Cn
qn

n!
· (5)

Let us notice that Castaing’s approach can be linked to the
recently proposed Fokker-Planck/Langevin description of
the intermittency [14]. In these papers, the authors as-
sume that the velocity field is a Markov process across
scales and suggest that the velocity increment pdf at dif-
ferent scales obey a Fokker-Planck differential equation
characterized by a drift and a diffusion coefficient. Even
though this description remains, to a large extent, formal
from a mathematical point of view and, very much like
the cascade paradigm, very phenomenological, it can be
interesting because of its great versatility as far as scaling
behavior is concerned [15]. Moreover, some recent works
have tried to build some bridge between the Fokker-Planck
approach and Navier-Stokes dynamics [16].

The question whether turbulent velocity signals do
(or do not) present a space-scale cascade structure thus
amounts to checking that the successive velocity mag-
nitude cumulants possess the same scale behavior. This
perspective can be extended from structure functions to
unfused correlations functions [17] (e.g., 〈δvql (x)δvpl′(x +
∆x)〉), by studying the behavior of the magnitude con-
nected correlation functions (MCCF):

Cll′(∆x) = 〈ln(|δvl(x)|) ln(|δvl′(x+∆x)|)〉c , (6)

where the symbol c stands for “connected” correlations,
i.e. the derivatives of the 2-points cumulant generating
function (see Sect. 3). These correlation functions have
been introduced in reference [18] and play the same role for
the multivariate multi-point velocity law as the previous
magnitude cumulants for the one-point law. If unfused
correlation functions are assumed to scale with the lag ∆x

(as for multiplicative cascade processes), then the MCCF
are expected to display a logarithmic dependence on the
spatial distance ∆x [18].

The goal of this paper is to push further the analysis
carried out in references [9,18] by studying both the cumu-
lants and the connected correlation functions associated
to ln(|δvl|) at different scale l, with the aim to establish
a clear diagnostic about (i) the scaling properties of ex-
perimental turbulent velocity records and (ii) to quantify
the intermittent character of the velocity field at differ-
ent Reynolds numbers. Among the available experimental
data, a lot of effort has been devoted to the study of the
longitudinal velocity component recorded in directional
flows such as jets or wind tunnels [2,4–6]. In these config-
urations, the Taylor hypothesis that considers the spatial
structure of the flow as globally advected upon the probe,
enables us to interpret temporal time series as spatial pro-
files. We will work with signals gracefully supplied by three
different experimental groups. The signals labelled with
Taylor scaled Reynolds number Rλ = 89, 208, 463, 703
and 929 stem from Castaing’s group and were recorded
in a gaseous helium jet at very low temperature in CRTB
(Grenoble) [19]; the signal labelled Rλ = 570 stems from
Baudet’s group and was recorded in an air jet in LEGI
(Grenoble); the signal labelled Rλ = 2500 was recorded
at the ONERA wind tunnel in Modane by Gagne and
collaborators [20].

2 One-point magnitude cumulant analysis

Let us start investigating one-point statistics via the com-
putation of the cumulants Cn(l) of ln(|δvl|). This amounts
to assume the following general cumulant expansion of
structure function exponents:

M(q, l) = 〈|δvl|q〉 = Kq e
P+∞
n=1 Cn(l) q

n

n! . (7)

Let us note that the ESS situation (Eq. (2)) corre-
sponds to Cn(l) = −Cnf(l), ∀n. Let us also point out
that within this framework, the Fokker-Planck model for
the even part of the velocity pdf is equivalent to sup-
pose that only the first two cumulants C1(l) and C2(l)
are non zero and are simply related to the drift and
diffusion coefficients [14,15]. The cumulants Cn(l) can
be estimated by using a polynomial fit of the curve
ln(M(q, l)/ ln(M(q, l0)), where l0 is an arbitrary reference
scale (let us remark that the cumulants Cn(l) are defined
in equation (7) up to an additive constant that can be
changed by a redefinition of Kq). In practice, we have
estimated the first three cumulants by using polynomial
least square fits of order 3 and 4 that turn out to pro-
vide the same results. In Figure 1a, C1(l) is plotted vs.
ln(l) for all signals. They are all characterized by an in-
tegral scale L corresponding to a decorrelation of the in-
crements |δvl| for l > L. Below this saturated regime,
there is no well defined “inertial range” since one ob-
serves a continuous cross-over across scales towards the
smooth dissipative regime down the Kolmogorov scale η.
Let us note that the integral scale does not depend on
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Fig. 1. Magnitude cumulants Cn(l) of the seven studied signals for Rλ = 89 (◦), 208 (•), 463 (M), 570 (×), 703 (N), 929 (�)
and 2500 (�). (a) C1(l) vs. ln(l): some continuous cross-over is observed from a decorrelated regime at large scales down to a
smooth one at small scales. (b) C2(l) vs. ln(l): a scaling behavior is obtained with the same slope −C2 = −0.025 ± 0.003 for
all signals. (c) C3(l) vs. ln(l): in the inertial range and for the largest values of Rλ, the slope is compatible to zero up to finite
sample effects. (d), (e) and (f): same curves as in (a), (b) and (c), when all integral scales are set to 1. In the inset of (d), the
solid line corresponds to the prediction of the Langevin model defined in the text after adjusting the integral scale L and the
variance of the noise to the measured ones.

the Reynolds number but only on geometrical consider-
ations. As an illustration, one gets the same value for L
for all the signals stemming from Castaing’s group which
were recorded in the same apparatus, Rλ being controlled
either by the mean speed of the flow or by the value of
viscosity that is changed by tuning temperature. Further-
more, the numerical values obtained for L: 1.82 cm for
Castaing’s group, 0.91 m for Baudet’s group and 10.2 m
for Gagne’s group, correspond to the characteristic sizes of

the experimental set-ups. L is thus a geometric parameter
and when one increases Rλ, the inertial range increases
via the decrease of η. Let us notice that in reference [19],
a Langevin model is proposed as a simple model of the
Lagrangian dynamics of a particle in the flow. In this
model, a friction constant is introduced to saturate the
r.m.s. velocity at large times. By writing the same kind
of Langevin equation for Eulerian velocity increments,
δ̇v = −γδv +W (t) (where γ = vr.m.s/L and W is a white
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noise whose variance corresponds to the mean dissipation
ε), and by interpreting the Eulerian second order struc-
ture function 〈δv2

l 〉 as the parametrized curve 〈δv2(t)〉 vs.
l(t) = 〈(

∫ t
0 v(t′)dt′)2〉1/2, one can also reproduce the shape

of the cross-over of C1(l) from the saturated regime to the
inertial one as shown in the inset of Figure 1d. However
this approach does not account for the cross-over in the
dissipative region and the precise functional form of C1(l)
is likely to depend on the experimental parameters and to
be strongly influenced by anisotropic effects [12] as well as
by the inhomogeneity of the flow [21].

The situation is very different for the second magni-
tude cumulant C2(l) when plotted vs. ln(l) as shown in
Figure 1b. We first notice that the decorrelation scale
where C2(l) saturates, is even better defined with C2(l)
than with C1(l), since a linear behavior is observed up to
this scale without any cross-over. The most important fea-
ture is that, whatever the set-up and whatever Rλ, all the
data fall on linear curves which all have the same slope
−C2 = −0.025± 0.003. As a matter of fact, if we super-
impose all the curves by setting all L to 1, as shown in
Figure 1e, we cannot distinguish anymore one curve from
the others. This consideration is particularly relevant in
the case of the signals of Castaing’s group where Rλ is
varied without changing L.

The results concerning the third magnitude cumu-
lant C3(l) are reported in Figures 1c and 1f. The slope
of the curves obtained when plotting C3(l) vs. ln(l) sys-
tematically decreases when increasing Rλ. For small Rλ,
C3 is significantly different from zero which means that
the log-normal paradigm is not valid. In fact, from the
curvature of the corresponding experimental C1(l) curves,
we believe that this is rather a confirmation of the ab-
sence of a well defined inertial range for these low values
of Rλ. For the largest values of Rλ (≥ 800), C3 becomes
small enough (up to finite sample effects as previously re-
ported in Ref. [9]) to be neglected [22]. At high Reynolds
numbers, one can thus suppose that C3 = 0 (and so the
higher order cumulants) that implies a normal shape for
the propagator Gll′ in agreement with log-normal mod-
els [7–9] and with the findings of references [14] justifying
a Fokker-Planck description. To summarize, the scale be-
havior of structure functions is well described by the first
two terms in the cumulant expansion of Gll′ and the dif-
ferences observed in the behavior of C1(l) (Figs. 1a and d)
and C2(l) (Figs. 1b and e) bring the experimental demon-
stration of the inconsistency of the ESS hypothesis which
rigorously requires an identical scale behavior for the two
cumulants (Eq. (7)). The full ζq spectrum cannot thus be
defined in the range of Reynolds numbers we have investi-
gated but the scaling exponent C2 = 0.025±0.003 of C2(l)
appears to be a universal (model independent) character-
istic of intermittency.

3 Two-point magnitude cumulant analysis

Let us now focus on the MCCF, Cll′(∆x) defined in equa-
tion (6). This function is of central interest if one extends

the previous log-normal hypothesis to the whole magni-
tude process (this assumption will be explicitly checked in
a forthcoming paper). In that case, the unfused n-points
correlation function

M(q1 . . . qn; l1 . . . ln;x1 . . . xn) =
〈|δvl1(x1)|q1 ...|δvln(xn)|qn |〉, (8)

where |xi − xj | > sup(li, lj), can be simply expressed in
terms of the structure functions M(qi, li) and the MCCF
Clilj (xi − xj) as:

M(q1 . . . qn; l1 . . . ln;x1 . . . xn) =
n∏
i=1

M(qi, li)e
1
2

P
i6=j qiqjClilj (xi−xj). (9)

Let us recall that for scale invariant processes and particu-
larly for a cascade process, we expect the scaling behavior

M(q1 . . . qn;λl1 . . . λln;λx1 . . . λxn)

∼ λh(q1...qn)M(q1 . . . qn; l1 . . . ln;x1 . . . xn), (10)

which implies that the MCCF is a logarithmic function:

Cll′(∆x) = −C2 ln(∆x/L). (11)

In Figure 2 are shown the MCCF computed at a single
small scale (l = l′) for each experimental signal. Three
main observations must be raised from these curves. First,
the MCCF do not behave linearly but rather as the square
of the logarithm of the spatial distance ∆x:

Cll(∆x) = α(Rλ) ln2(∆x/L) . (12)

This quadratic behavior is universal as far as experimen-
tal set-ups are concerned and has never been observed
before. Second, the respective integral scales at which the
magnitudes are decorrelated are nearly the same as the
ones observed on the corresponding cumulants Cn(l) (n =
1,2), which is not a trivial result. As pointed out in ref-
erence [18] and illustrated in Figure 2b, one can check
that the MCCF computed at different scales l and l′

all collapse on a single curve provided ∆x > max(l, l′).
Finally, as shown in Figure 3, the prefactor α(Rλ) in
equation (12) has a systematic decreasing behavior as a
function of Rλ. As far as the analytic shape of this de-
crease is concerned, there is no certainty. As illustrated
in Figure 3a, a power-law behavior: α ∼ R−aλ with a '
0.20 ± 0.03 provides a reasonable good fit of the data.
But as shown in Figure 3b, one can also fit the data by
α ∼ K/ ln(Rλ) with K = 0.027 ± 0.006, which is a par-
ticular Reynolds number dependance that allows us to
define a characteristic scale of the flow under study. In-
deed, if one considers that the decorrelation scale is the
same for the magnitude cumulants Cn(l) and the MCCF,
from the behavior of the variance as −C2 ln(l/L) and of
the MCCF as α ln2(∆x/L), one can define a character-
istic scale lc where the two curves meet (when identify-
ing scale and space-lag according to the multiplicative
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Fig. 2. Magnitude connected correlation functions. (a) Cll(∆x) = 〈ln(|δvl(x)|) ln(|δvl(x + ∆x)|)〉c vs. ln(∆x). (b) Cll(∆x),
Cl′l′(∆x) and Cll′(∆x) for l′ = 8l. (c) Square root of Cll(∆x) vs ln(∆x); Cll(∆x) behaves as α ln2(∆x) whatever the experimental
set-up with a systematic decrease of α when Rλ is increased. (d) Same curves when all integral scales L are set to 1. The
considered scale is l ' 50 µm for Castaing’s signals, 0.15 mm for Baudet’s signal and 3.2 mm for Gagne’s signal. The symbols
correspond respectively to the seven same signals as in Figure 1.

Fig. 3. Prefactor α(Rλ) of the quadratic behavior of Cll(∆x) vs. ln(∆x) (see Fig. 2). (a) ln(α) vs. ln(Rλ); the data are
compatible with a power-law behavior α ∼ R−aλ with a = 0.20 ± 0.03 (solid line). (b) 1/α as a function of ln(Rλ); the data
are compatible with a behavior α ∼ K/ ln(Rλ) with K = 0.027 ± 0.006 (solid line). The symbols have the following meaning:
(◦) Castaing’s group, (×) Baudet’s group and (�) Gagne’s group.
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cascade picture [18]): ln(lc/L) = −C2/α. With the nu-
merical values extracted from Figures 1b, 2 and 3b, one
gets (lc/L) ∼ R−bλ with b = 0.91± 0.3. This new scale lc
might well be the Taylor scale λ for which b = 1. In that
respect, our approach could be a way to measure objec-
tively λ and this even when the dissipative scale η is not
resolved. This universal quadratic behavior of the MCCF
vs. ln(∆x) and the systematic decrease of α(Rλ) when
increasing Rλ, are new observations which enables us to
make some conjecture about the asymptotic limit of infi-
nite Reynolds number. As pointed out in references [9,18],
correlations in the magnitude are the signature of a mul-
tiplicative structure. If we extrapolate the observed be-
havior to infinite Rλ, we predict the convergence to zero
of the MCCF on any finite inertial range of scales. That
is to say, in the limit of infinite Rλ, the spatial fluctua-
tions of the longitudinal velocity component are, from the
point of view of unfused correlation functions, not likely
to possess any intermittent nature, which contrasts with
the previous conclusions based on one-point statistics.

4 Conclusion

To summarize, we have advocated in this paper the study
of scaling properties of longitudinal velocity increments by
means of one- and two-points magnitude cumulant analy-
sis. The results of our measurements for seven flows, at
seven different Rλ and stemming from different exper-
imental set-ups, are two-fold. Concerning the one-point
(fused) statistics, we mainly observe that the log-normal
approximation is pertinent at sufficiently high Reynolds
number and that the first two cumulants have not the
same scale behavior as assumed by the ESS hypothe-
sis. While C1(l) displays some Reynolds and set-up de-
pendent departure from scale invariance, C2(l) exhibits
scale invariance behavior with a universal intermittency
coefficient C2 = 0.025 ± 0.003. Concerning the two-
points (unfused) statistics, we observe that the behavior
of the MCCF vs. ln(∆x) is quadratic whatever the con-
sidered experiment but with a prefactor α(Rλ) which de-
creases when increasing Rλ. These new observations lead
us to conjecture that in the limit of infinite Reynolds
number, the multipoint statistics of longitudinal velocity
fluctuations are not intermittent. Accordingly the inter-
mittency, as well defined by the intermittency exponent,
appears only in the fused statistics in the spirit of the log-
normal multifractal description pioneered by Kolmogorov
and Obukhov in 1962 [7], i.e. with an intermittency co-
efficient C2 = 0.025± 0.003 but without any correlations
across scales. This is not at all shocking from a physical
point of view since the dynamical cascading process [2]
does not a priori imply that there should be some mul-
tiplicative (cascading) spatial organization. Furthermore,
one must realize that our conclusions come out from the
study of 1D cuts of the velocity field only. In a forthcoming
publication, we plan to carry out a similar analysis of a
3D velocity field issued from direct numerical simulations,
with the specific goal of testing the validity of this non
multiplicative log-normal multifractal picture to account

for the intermittent nature of fully developed turbulent
3D velocity fields.

We are very grateful to B. Castaing’s, C. Baudet’s and Y.
Gagne’s groups for the permission to use their experimental
signals.
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